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A Power Flow Method using a New Bus Type for
Computing Steady-State Voltage Stability Margins

Scott G. Ghiocel,Student Member, IEEEand Joe H. Chow,Fellow, IEEE

Abstract—In steady-state voltage stability analysis, it is well-
known that as the load is increased toward the maximum
loading condition, the conventional Newton-Raphson powerflow
Jacobian matrix becomes increasingly ill-conditioned. Asa result,
the power flow fails to converge before reaching the maximum
loading condition. To circumvent this singularity problem, con-
tinuation power flow methods have been developed. In these
methods, the size of the Jacobian matrix is increased by one,
and the Jacobian matrix becomes non-singular with a suitable
choice of the continuation parameter.

In this paper, we propose a new method to directly eliminate
the singularity by reformulating the power flow. The central idea
is to introduce an AQ bus in which the bus angle and the reactive
power consumption of a load bus are specified. For steady-state
voltage stability analysis, the voltage angle at the load bus can
be varied to control power transfer to the load, rather than
specifying the load power itself. For anAQ bus, the power flow
formulation consists of only the reactive power equation, thus
reducing the size of the Jacobian matrix by one. This reduced
Jacobian matrix is nonsingular at the critical voltage point. We
illustrate the method and its application to steady-state voltage
stability using two example systems.

Index Terms—Voltage stability analysis, voltage stability mar-
gin, Jacobian singularity, angle parametrization, AQ bus

I. I NTRODUCTION

V Oltage instability has been the cause of many major
blackouts [1, 2, 3]. In a power system operation envi-

ronment, it is important to ensure that the current operating
condition is voltage stable subject to all credible contingencies.
Methods for calculating the stability margin for each contin-
gency can be classified into two categories: dynamic (time-
domain simulation) and steady-state (power flow methods)
[4, 5]. Time-domain simulation can capture the dynamic
elements of voltage instability. In this paper we are only
dealing with steady-state voltage stability analysis occurring
over a long time span.

One difficulty in steady-state voltage stability analysis is
that the conventional Newton-Raphson power flow fails to
converge as the maximum loadability point is reached. In the
unconstrained case, the Jacobian matrixJ becomes singular
at maximum loading, and the power flow solution will not
converge when the smallest singular value ofJ becomes too
small [4, 5].

To circumvent this singularity problem, continuation power
flow methods based on homotopy techniques have been de-
veloped [6, 7]. In this approach, a load-increase continuation
parameterλ is introduced as an additional variable. As a

S. Ghiocel and J. Chow are with the Department of Electrical,Computer,
and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180,
USA. (e-mail: ghiocel@alum.rpi.edu, chowj@rpi.edu)

Table I
POWER FLOW BUS TYPES

Bus types Bus representation Fixed values
PV Generator buses Active power generation

and bus voltage magnitude
PQ Load buses Active and reactive consumption
AV Swing bus Voltage magnitude and angle
AQ Load buses Voltage angle and

reactive power consumption

result, the size of the Jacobian matrix is increased by one,
which becomes non-singular with a suitable choice of the
continuation parameter. The continuation power flow is solved
in a two-step process with a predictor step and a corrector
step, and requires additional manipulations and computation
[8]. During the corrector step, the continuation method still
needs to deal with a poorly conditioned Jacobian.

In this paper, we propose a new power flow method to
directly eliminate the singularity issue without adding the
additional complexity required by such homotopy methods.
Elimination of the singularity allows for a well-conditioned
power flow solution even at the maximum loadability point.
The central idea is to reformulate the power flow with the
introduction of a new type of load bus, which we call an
AQ bus (A stands for angle). A conventional power flow
formulation uses three types of buses:PV buses,PQ buses,
and the swing bus (TableI1). For anAQ bus, the bus voltage
angleθ and the reactive power consumptionQ are specified.
In this sense, a swing bus can be considered as anAV
bus, because its angle is fixed and its voltage magnitude is
known. In this formulation, the active power balance equation
at the AQ load bus is no longer needed. Only the reactive
power balance equation is kept. Furthermore, becauseθ at this
bus is known, it is eliminated from the power flow solution
vector consisting of bus voltage magnitudes ofPQ buses
and bus voltage angles of all the buses except for the swing
bus. Thus the size of the resulting Jacobian matrixJR is
reduced by one. ThisJR matrix is nonsingular at the maximum
loadability point, and thus it avoids the singularity problem of
the conventional Jacobian matrixJ .

The load increase on BusBL, when specified as anAQ bus
in this new power flow method, is achieved by increasing the
bus voltage angle separationθs between BusBL and the swing
bus. It is expected that the loadPL will increase withθs until

1A recent paper [9] lists 16 bus types, of which theAQ or θQ bus is
one of them. The paper addresses only the solvability issue of the Bus-
type Extended Load Flow (BELF), without addressing specifically the voltage
stability margin calculation using theAQ-bus formulation.
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the critical voltage point, then further increases inθs will result
in a decrease ofPL. For each value ofθs, the amount ofPL

is not known until the power flow is solved. This eliminates
the active power balance equation at the load busBL. The
reactive power balance equation atBL is still maintained. For
load increases involving constant-power-factor loads andat
multiple buses, additional expressions are needed to develop
the reduced Jacobian matrixJR. The computation of voltage
stability margins using this method is no more complicated
than a conventional load flow solution and the step size in
increasingθ to reach the critical voltage point is not limited.
In addition, computation-speed enhancement techniques such
as decoupled power flow can still be used [10].

This paper is organized as follows. In Section II, we use
a single-load stiff-bus model to motivate the new problem
formulation. Sections III provides the general framework of
the approach. Section IV uses two example test systems to
illustrate the method.

II. M OTIVATION

Consider the two-bus power system shown in Fig.1, in
which the load bus is connected via a reactanceX to the stiff
voltage source withE = 1 pu and its angle set to zero. The
load is denoted by a voltage of magnitudeVL and phase−θs,
and a power consumptionPL + jQL. The angleθs is positive
so that power is transferred from the stiff source to the load.
Following [4], we will consider the power flow solutions of
the system for constant power load whereQL = PL tan(φ),
wherecos(φ) is the power factor (φ is positive for lagging and
negative for leading).

jX

constant

stiff source (strong system)

E

0jEe I sj
LV e

L LP jQ

Figure 1. A two-bus power system

There are two relevant power flow equations for this system,
both for the load bus:

PL = −
VLE sin θs

X
, QL =

VLE cos θs

X
−

V 2
L

X
(1)

Treating the load bus as aPQ bus, the Jacobian matrix ob-
tained by taking the partial derivatives of these two equations
with respect toθs andVL is

J = −
1

X

[

VLE cos θs E sin θs

VLE sin θs 2VL − E cos θs

]

(2)

The JacobianJ is singular when

detJ = (2VL cos θs − E)/X = 0 (3)

which occurs at the critical voltage point.
If the load bus is taken as anAQ bus, then the separation

angleθs can be specified without specifyingPL and the active
power equation is no longer needed. IfQL is fixed, then the

reduced matrixJR is simply the (2,2) entry ofJ (2). Here the
load is of constant power factor, i.e.,QL = PL tanφ, allowing
the reactive power equation to be rewritten as

QL =
VLE cos θs

X
−

V 2
L

X
= −

VLE sin θs

X
tan φ (4)

that is,

0 =
VLE cos θs

X
−

V 2
L

X
+

VLE sin θs

X
tanφ (5)

The reduced Jacobian is the partial derivative of (5) with
respect toVL

JR =
1

X
(E cos θs − 2VL + E sin θs tan φ) (6)

which is singular whenJR = 0.
For the 2-bus system in Fig.1, we explore the singularities

of the Jacobians (2) and (6). UsingE = 1 pu andX = 0.1 pu,
we plot the variation ofθs, PL, VL, and the determinants of
J andJR, for 0.9 lagging, unity, and 0.9 leading power factor
loads. Fig.2 shows the familiarPV curve. The singularity of
J occurs when the slope of thePV curve becomes infinite.
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Figure 2. PV curves

Figs. 3 and 4 show the variation ofVL and PL versus
θs. The slopes of these curves are finite within the complete
operational range of the angle separation. The peak of each
PL curve in Fig.4 corresponds to the value of the separation
angleθc at the critical voltage point. Note that the power factor
of the load determines the maximumθs that is feasible.

The values of the determinants ofJ and JR are shown
in Fig. 5. It is obvious thatdet(J) = 0 at θc, the value
of the angle separation at the critical voltage point. On the
other hand,JR remains nonzero atθc, such that the Newton-
Raphson iteration scheme will readily converge. In addition,
JR = 0 only when the load bus voltageVL is zero.

Figs. 4 and5 show that the separation angleθs is a useful
variable to provide additional insights into the voltage stability
problem. Most voltage stability analysis investigations have
focused directly onVL and largely ignored following up on
θs.
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Figure 3. Variation ofVL versusθs
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Figure 4. Variation ofPL versusθs
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Figure 5. Determinant ofJ andJR as a function ofθs

III. T HEORETICAL FRAMEWORK AND COMPUTATION

ALGORITHMS

In this section, we consider the general framework of a
power flow formulation including anAQ bus, and extend
the method for steady-state voltage stability analysis allowing
for load and generation increases on multiple buses and for
constant power factor loads.

Consider a power system withNG generator buses and
NL load buses, such that the total number of buses isN =
NG +NL. Let Bus 1 be the swing bus, Buses 2 toNG be the
generatorPV buses, and BusesNG +1 to N be the loadPQ
buses.

The power flow problem consists of solving the active and
reactive power injection balance equations

∆Pi = Pi − fPi(θ, V ) = 0, i = 2, ..., N (7)

∆Qi = Qi − fQi(θ, V ) = 0, i = NG + 1, ..., N (8)

wherePi andQi are the scheduled active and reactive power
injections at Busi. VectorsV and θ contain the bus voltage
magnitudes and angles, andfPi(θ, V ) andfQi(θ, V ) are the
computed active and reactive power injections, respectively.
∆P is the vector of active power mismatches at Buses 2 to
N , and ∆Q is the vector of reactive power mismatches at
BusesNG + 1 to N .

The power flow problem is commonly solved by the
Newton-Raphson method, using the iteration

J

[

∆θ
∆V

]

=

[

J11 J12

J21 J22

] [

∆θ
∆V

]

=

[

∆P
∆Q

]

(9)

where the Jacobian matrixJ is a square matrix of dimension
(2N −NG −1) containing the partial derivatives of the active
and reactive power flow equations with respect to the bus
anglesθ and the voltage magnitudesV , where

J11 =
∂fP

∂θ
, J12 =

∂fP

∂V
, J21 =

∂fQ

∂θ
, J22 =

∂fQ

∂V
(10)

θ =
[

θ2 · · · θN

]T
(11)

V =
[

VNG+1 · · · VN

]T
(12)

∆θ and∆V are the corrections onθ andV , respectively.

A. Power flow formulation including anAQ bus

Suppose BusN is an AQ bus with θN = θ◦N and QN

specified, then the Newton-Raphson iteration reduces to

JR

[

∆θR

∆V

]

=

[

JR11 JR12

JR21 JR22

] [

∆θR

∆V

]

=

[

∆PR

∆Q

]

(13)

where

JR11 = J11(1 . . . N − 2; 1 . . . N − 2)|θN=θ◦

N

(14)

JR12 = J12(1 . . . N − 2; 1 . . . N − NG)|θN=θ◦

N

(15)

JR21 = J21(1 . . . N − NG; 1 . . . N − 2)|θN=θ◦

N

(16)

JR22 = J22|θN=θ◦

N

(17)

The number of bus angle variables is reduced by one, such
that

∆θR =
[

∆θ2 · · · ∆θN−1

]T
(18)
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The AQ bus active power flow equation is eliminated, such
that ∆PR is the vector of active power mismatches at Buses
2 to (N − 1). The loadPN on BusN is no longer specified,
but it can be computed usingfPi(θ, V ).

This reduced power flow formulation would not yield
directly a specificPN on Bus N . However, this is not a
hindrance in voltage stability analysis. Instead of increasing
PN on BusN and not knowing whether the non-convergent
result is actually the maximum loadability point, a user can
keep increasing the angular separation between BusN and the
swing bus until the maximum power transfer point is reached.
The reduced JacobianJR would not be singular at that point
and the maximum loadability point can be readily computed.

B. Voltage stability analysis for constant-power-factor loads

In voltage stability analysis, it is common to specify
constant-power-factor loads. In this section, we will extend
the iteration (13) to a more general case by considering
constant-power-factor load increases at multiple load buses to
be supplied by generators at multiple locations.

Let BusesNp to N be load buses with constant power factor
cosφℓ, that is,Qℓ = Pℓ tan φℓ for ℓ = Np, ..., N . The active
power load increases at these load buses are scaled with respect
to BusN , that is,

Pℓ − P 0
ℓ = αℓ

(

PN − P 0
N

)

, ℓ = Np, ..., N − 1 (19)

The load increase is balanced by increases in outputs of
generators on Buses 1 toq, with the active power at these
generators scaled according to the swing bus

Pk − P 0
k = βk

(

P1 − P 0
1

)

, k = 2, ..., q (20)

In a solved power flow solution, the active power injections
at Buses 1 andN are computed as the power flow leaving
the buses on the lines interconnecting them to the other buses.
Thus in anAQ-bus formulation, we account for the groups of
increasing load and generation by modifying the power flow
injection equations such that

fPk(V, θ) = βkfP1(V, θ), k = 2, ..., q (21)

fPℓ(V, θ) = αℓfPN (V, θ), ℓ = Np, ..., N − 1 (22)

fQℓ(V, θ) = αℓfPN (V, θ) tanφℓ, ℓ = Np, ..., N − 1 (23)

The other injection equations remain unchanged.
In obtaining a new reduced Jacobian matrix to solve this

new power flow problem, we need two row vectors of partial
derivatives offP1 andfPN

Ji =
[

∂fP i

∂θR

∂fP i

∂V

]

, i = 1, N (24)

whereJi is the ith row of the Jacobian. Note thatJN is row
N − 1 of J without the entry due to∆θN , and J1 is not
contained inJ because Bus 1 is the swing bus.

Thus the reduced JacobianJR in (13) for the fixed reactive
power injection problem is modified to form a new reduced

JacobianJ̄R, such that

J̄Ri = JRi − βkJ1, i = 1, ..., q − 1, k = 2, ...q
(25)

J̄Ri = JRi − αℓJN , i = Np − 1, ..., N − 2,

ℓ = Np, ..., N − 1 (26)

J̄Ri = JRi − αℓJN tan φℓ, i = NJR
− Np, ..., NJR

,

ℓ = Np, ..., N − 1 (27)

whereNJR
= 2N −NG−2 is the dimension ofJR. The other

rows of JR remain unchanged.
In this more general formulation of theAQ-bus power flow,

the Newton-Raphson iteration becomes

J̄R

[

∆θR

∆V

]

=

[

∆PR

∆Q

]

(28)

where the power mismatch (21)-(23) is based on the previous
iteration. In voltage stability margin calculations, the injection
solution at a lower angle separation condition can be used to
initiate the solution process.

C. Algorithms for computing voltage stability margins

BecauseJ̄R in (28) would not be singular at the max-
imum loadability point, fast and well-conditioned voltage
stability margin calculation methods can be formulated. Here
we present two algorithms for steady-state voltage stability
analysis as basic applications of theAQ-bus method.

Algorithm 1: using AQ-bus power flow with J̄R to compute
voltage stability margins

1) From the current operating point (base case) with a
power transfer ofP0, specify the load and generation
increment schedule, and the load composition (such as
constant power factors).

2) Use a conventional power flow program with increasing
loads until the Newton-Raphson algorithm no longer
converges.

3) Starting from the last converged solution in Step 2, apply
theAQ-bus power flow method (19)-(28) to continue the
power flow solution by increasing the angle separation
(θ1 − θN ) between theAQ bus and the swing bus
until the maximum power transferP0max is reached.
Typically, the bus with the largest load increase will
be selected to be theAQ bus. The base-case voltage
stability margin isP0m = P0max − P0.

4) Specify a set ofNc contingencies to be analyzed.
5) For contingencyi, repeat Steps 2 and 3 for the post-

contingency system to compute the maximum power
transferPi max and the voltage stability marginPim =
Pi max − P0.

6) Repeat Step 5 for all contingenciesi = 1, 2, . . . , Nc.
7) The contingency-based voltage stability margin, mea-

sured as additional power delivered to the load until the
maximum loadability point, is given by

Pm = min
i=0,...,Nc

{Pi max} (29)

Note that for any of the contingencies in Step 5, if theAQ-
bus algorithm forP0 fails to converge, that is,P0 is not a
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feasible solution, then theAQ-bus algorithm can be used to
reduceP0 until a converged power flow solution is obtained.
The new power flow solution would then be a voltage secure
operating condition.

Also note in Steps 3 and 5 of Algorithm 1, all the capability
of the conventional power flow can be used. For example, taps
can be adjusted to maintain voltages, and generators exceeding
their reactive power capability can be changed toPQ buses
from PV buses. Both capabilities are important for finding
the proper voltage stability limit.2

The advantage of using a conventional power flow algorithm
in Step 2 of Algorithm 1 is that it will allow a user to select the
AQ bus for Step 3. There are several ways to select theAQ
bus: (1) use the bus with the largest load increase (as statedin
Step 3 of Algorithm 1), (2) use the bus with the largest rate
of decrease of the bus voltage magnitude, or (3) use the bus
angle with the largest component in the singular vector of the
smallest singular value of J from the last converged solution.
Frequently all three will yield the same bus.

It is also possible to solve for voltage stability margins
without updatingJR (13). This method can be useful when
one wants to avoid changing or reprogramming the Jacobian
matrix entries, but it has slower convergence. The load increase
condition (19), the generator increase condition (20), and the
load power factor conditionQℓ = Pℓ tan φℓ are now enforced
as fixed values after each power flow iteration has converged.

To be more specific, start from the nominal power flow
solution with the load on BusN at P0. The angular separation
of BusN and the swing bus is increased without changing any
injections. The power flow is solved, and the resulting load at
BusN and the generation at the swing bus are computed. This
new valuePN is used to compute the load increase on the other
load buses (19), to be balanced by the generations according to
(20). These new load and generation values are used to solve
for anotherAQ-bus power flow. The process is repeated until
the load and generation proportions are within tolerance. This
procedure is summarized is the following algorithm.

Algorithm 2: using unmodified JR to compute voltage
stability margins

1) From the current operating point (base case) with a
power transfer ofP0, determine the load and generation
increment schedule, and the load composition (such as
constant power factor).

2) Use a conventional power flow program with increasing
loads until the Newton-Raphson algorithm no longer
converges.

3) Starting from the last converged solution in Step 2, apply
theAQ-bus power flow algorithm (13) by increasing the
angle separation between theAQ bus and the swing bus,
to obtain a converged value of load at BusN asPN .

4) Update the loads and generations at the other buses
according to (19) and (20), respectively, and repeat the
power flow solution, until (19) and (20) are satisfied.

2Chapter 3 of [7] contains a more detailed discussion of voltage stability
margin calculation for equipment reaching their reactive power output limits.
At the breaking point, the smallest singular value of the conventional Jacobian
matrix may not be exactly zero. TheAQ-bus method can still be useful if
the regular power flow cannot converge at the breaking point.

120
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1 20
3 13

12

11

Gen 1

Gen 2

Gen 11

Gen 12

Area 1

101
110

2

10

4 14

Load 4 Load 14

Figure 6. Two-area, four-machine power system

5) Increase the angular separation between BusN and the
swing bus and repeat Steps 3 and 4 until the load power
at BusN reaches the maximum value.

6) Apply Steps 4 to 7 of Algorithm 1 using Steps 2 to 5
of this algorithm to find the contingency-based voltage
stability margin.

It is expected that Algorithm 2 would be slower than
Algorithm 1. However, in Algorithm 2, minimal additional
code for the Jacobian is needed.

IV. I LLUSTRATIVE EXAMPLES

In this section theAQ-bus power flow approach is applied
to solve for the voltage stability margin of a 2-area, 4-machine
system, and a 48-machine system.

A. Two-area system

We first use the Klein-Rogers-Kundur 2-area, 4-machine
system [11] shown in Fig.6 to illustrate the method. In this
system, Load 14 will be increased at a constant power factor
of 0.9 lagging whereas Load 4 is kept constant at9.76+j1 p.u.
The load increase is supplied by Generator 1. It is assumed
that all the generators have unlimited reactive power supply.

Using Algorithm 1, the conventional power flow solution
is shown as the black dashed line of thePV curve in Fig.
7. It fails to converge when the active power of Load 14 is
P14 = 19.15 pu which occurs when the angle separation is
θ1 − θ14 = 91.1◦. After this point, theAQ-bus approach is
used to continue the power flow solution by further increasing
the angle separation between Buses 1 and 14. The solution of
the AQ-bus approach is shown as the solid line of thePV
curve in Fig.7. From thePV curve, the critical voltage is
0.8144 p.u. and the maximum active load power is 19.2 p.u.,
with a power factor of 0.9 lagging.

We also plot the load active power at Bus 14 versus the
angle separationθ1 − θ14 with the black curves in Fig.8.
Note that at maximum power transfer,θ1 − θ14 = 99.5◦.

1) Singular value analysis:At the maximum loadability
point, the largest singular value ofJ is 423 and the two
smallest singular values are 3.59 and 0.02. At the same
operating point, the largest and smallest singular values of
the J̄R matrix are 423 and 2.49, respectively. ThusJ̄R does
not exhibit any singularity or convergence problems.

At the point where the conventional power flow fails to
converge, the smallest singular value of the Jacobian is 0.05
and its singular vector is given in TableII . Note that the
element of the singular vector with the largest magnitude
corresponds toθ14, the bus angle of the chosenAQ bus.
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2) Including var limits on a generator:Because theAQ-
bus power flow incorporates all the functionalities of a con-
ventional power flow, we can readily demonstrate the effect
of a var limit on a generator. Suppose we impose a maximum
reactive power generation of 3 pu for Generator 2, that is, if
the reactive power generation of Generator 2 exceeds 3 pu, it
will be changed into aPQ bus withQ = 3 pu. The resulting
PV andPθ curves for the same load increase conditions are
shown as the red curves in Figs.7 and8.

Also of interest is the amount of reactive power provided
by the four generators. Fig.9 shows the reactive power plotted
versusθ1−θ14 for the var-limited case. We observe that the var
limit on Generator 2 increases the reactive power burden on

Table II
SINGULAR VECTOR CORRESPONDING TO THE SMALLEST SINGULAR

VALUE OF THE CONVENTIONAL POWER FLOWJACOBIAN

Singular vector Corresponding
component variable
0.025 θ2

0.064 θ3

0.075 θ4

0.005 θ10

0.329 θ11

0.358 θ12

0.416 θ13

0.450 θ14

0.031 θ20

0.228 θ101

0.332 θ110

0.366 θ120

0.085 V3

0.086 V4

0.021 V10

0.117 V13

0.125 V14

0.048 V20

0.172 V101

0.024 V110

0.062 V120
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Figure 9. Reactive power output of generators in two-area system with a
var limit

Generator 1, and the reactive power losses continue to increase
after the point of maximum power transfer point, even though
the active power consumed by the load decreases.

3) Solution using Algorithm 2:We applied Algorithm 2 to
the two-area system and obtained the same results as with
Algorithm 1. Note that with Algorithm 2,JR is not modified
to include the load and generator increase schedules. Thus
Algorithm 2 is similar to a dishonest Newton method and
needs more iterations than Algorithm 1.

B. NPCC 48-machine system

In this section we extend theAQ-bus power flow to a
48-machine NPCC (Northeast Power Coordinating Council)
system [12] using Algorithm 1. A portion of the system map
is given in Figure10. For this system, we increase the loads on
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Figure 10. Map of the NPCC 48-machine system

Buses 4, 15, and 16 near Boston, with increased supply coming
from the generators on Buses 30 and 36 in New England, and
the generator on Bus 50 in New York, as indicated in Fig.
10. We choose Bus 50 as the swing bus and Bus 16 as the
AQ bus. Generators on Buses 30 and 36 supply additional
power as linear functions of the swing bus power output, as
shown in TableIII . Similarly, the loads on Buses 4 and 15
are scaled with respect to theAQ bus, as shown in TableIV.3

The loads at Buses 4, 15, and 16 all have a constant power
factor of 0.95 lagging. All the other loads remain constant at
their base values, and the active power generation for the other
generators also remain constant.

Table III
GENERATOR SCHEDULE FOR48-MACHINE SYSTEM

Generator Bus # Bus Type βk

50 AV (swing) -
30 PV 0.10
36 PV 0.80

Table IV
LOAD SCHEDULE FOR48-MACHINE SYSTEM

Load Bus # Bus Type αℓ

16 AQ -
4 PQ 0.50
15 PQ 0.25

We use theAQ-bus method to compute thePV curve for
the base case, which is shown in Fig.11 as the base case.

3Any of the buses in the load increase group (Buses 4, 15, and 16) can
chosen as theAQ bus for our method to work.

The method readily computes thePV curve to the maximum
loadability point and beyond. The algorithm fails to converge
when the system voltage is too low, because some load buses
can no longer receive enough reactive power.
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Line Trip Contingency Analysis based on PV Curves
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Line 3−−18 (50 MW)

Figure 11. PV-curves for multiple contingencies on the NPCC48-machine
system

To demonstrate the computation of the voltage stability mar-
gin for contingency analysis, a set of line outage contingencies
(A-E) is selected, as listed in TableV. The location of these
lines are labeled in Fig.10. In Fig. 11, we plot the computed
PV curves for the five contingencies against the base case
PV curve. Note that each power flow solution is designated
with a plot marker in Fig.11, demonstrating that theAQ-bus
method does not require a small step size near the maximum
power transfer point. In this example we used a step size of
5◦ but larger angle steps can be used.

Note that Line 73-74 is in New York. Hence its outage
results in aPV curve not much different from the base case
PV curve. Lines 3-2 and 3-18 are near the buses with load
increases, and thus thePV curves resulting from their outage
show less stability margins. Lines 8-73 and 2-37 are interface
lines between New York and New England. Their outages have
significant impact on the voltage stability margin because part
of the load increase in New England is supplied by a New
York generator. From TableV, the contingency-based voltage
stability margin is 944 MW for the load on Bus 16.

Table V
CONTINGENCY LIST FOR48-MACHINE SYSTEM

Contingency Line Outage Pre-contingency
Power Flow

Voltage Stability
Margin

A 73–74 72 MW 1, 346 MW
B 8–73 97 MW 944 MW
C 2–37 53 MW 1, 221 MW
D 3–2 295 MW 1, 005 MW
E 3–18 50 MW 1, 231 MW

V. CONCLUSIONS

In this paper, we have developed a general-purpose power
flow method that directly eliminates the matrix singularity
issues that arise inPV curve calculations by introducing a new
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AQ-bus type. The elimination of the singularity using theAQ-
bus method was motivated using a classical two-bus system,
and a framework was developed to include multiple load buses
and multiple generators in the computation ofPV curves. We
presented two algorithms for practical implementation of the
method and demonstrated both algorithms on a small two-
area system. Finally, we extended the method to a 48-machine
system to show its scalability and applicability to steady-state
voltage stability margin calculation and contingency analysis.

This new method provides many advantages in the com-
putation of steady-state voltage stability margins because it
does not have numerical issues at the maximum power transfer
point. Thus, power system operators can calculate the stability
margins using this method far more reliably and quickly than
a conventional power flow method.
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