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A Power Flow Method using a New Bus Type for
Computing Steady-State Voltage Stability Margins

Scott G. GhiocelStudent Member, IEEBNnd Joe H. Chowkellow, IEEE

Abstract—In steady-state voltage stability analysis, it is well-
known that as the load is increased toward the maximum
loading condition, the conventional Newton-Raphson poweflow
Jacobian matrix becomes increasingly ill-conditioned. As result,
the power flow fails to converge before reaching the maximum
loading condition. To circumvent this singularity problem, con-
tinuation power flow methods have been developed. In these
methods, the size of the Jacobian matrix is increased by one,
and the Jacobian matrix becomes non-singular with a suitald
choice of the continuation parameter.

In this paper, we propose a new method to directly eliminate
the singularity by reformulating the power flow. The central idea
is to introduce an AQ bus in which the bus angle and the reactive
power consumption of a load bus are specified. For steady-s&
voltage stability analysis, the voltage angle at the load tican
be varied to control power transfer to the load, rather than
specifying the load power itself. For anAQ bus, the power flow
formulation consists of only the reactive power equation, hus
reducing the size of the Jacobian matrix by one. This reduced
Jacobian matrix is nonsingular at the critical voltage poirt. We
illustrate the method and its application to steady-state wvltage
stability using two example systems.

Index Terms—\Voltage stability analysis, voltage stability mar-
gin, Jacobian singularity, angle parametrization, AQ bus

|. INTRODUCTION

Table |
POWER FLOW BUS TYPES

Bus types| Bus representation] Fixed values
PV Generator buses | Active power generation
and bus voltage magnitude
PQ Load buses Active and reactive consumptiof
AV Swing bus \oltage magnitude and angle
AQ Load buses \oltage angle and
reactive power consumption

result, the size of the Jacobian matrix is increased by one,
which becomes non-singular with a suitable choice of the
continuation parameter. The continuation power flow is sdlv

in a two-step process with a predictor step and a corrector
step, and requires additional manipulations and compuurtati
[8]. During the corrector step, the continuation method still
needs to deal with a poorly conditioned Jacobian.

In this paper, we propose a new power flow method to
directly eliminate the singularity issue without addinge th
additional complexity required by such homotopy methods.
Elimination of the singularity allows for a well-conditied
power flow solution even at the maximum loadability point.
The central idea is to reformulate the power flow with the

Oltage instability has been the cause of many majortroduction of a new type of load bus, which we call an
blackouts [, 2, 3]. In a power system operation envi-AQ bus (4 stands for angle). A conventional power flow
ronment, it is important to ensure that the current opegatifiormulation uses three types of busé¥v buses,PQ buses,

condition is voltage stable subject to all credible corgingjes.
Methods for calculating the stability margin for each conti

and the swing bus (Tablé). For anAQ bus, the bus voltage
anglef and the reactive power consumptighare specified.

gency can be classified into two categories: dynamic (timk¥ this sense, a swing bus can be considered asA&n
domain simulation) and steady-state (power flow method3)is, because its angle is fixed and its voltage magnitude is
[4, 5]. Time-domain simulation can capture the dynamiknown. In this formulation, the active power balance edrati
elements of voltage instability. In this paper we are onligt the AQ load bus is no longer needed. Only the reactive

dealing with steady-state voltage stability analysis odng
over a long time span.

power balance equation is kept. Furthermore, becawaddhis
bus is known, it is eliminated from the power flow solution

One difficulty in steady-state voltage stability analysss ivector consisting of bus voltage magnitudes B) buses
that the conventional Newton-Raphson power flow fails tand bus voltage angles of all the buses except for the swing
converge as the maximum loadability point is reached. In tiis. Thus the size of the resulting Jacobian matfix is

unconstrained case, the Jacobian matfivxecomes singular

reduced by one. Thigg matrix is nonsingular at the maximum

at maximum loading, and the power flow solution will notoadability point, and thus it avoids the singularity preinl of

converge when the smallest singular valueJobecomes too
small [, 5].

the conventional Jacobian matrik
The load increase on Bu3;, when specified as adQ bus

To circumvent this singularity problem, continuation powen this new power flow method, is achieved by increasing the

flow methods based on homotopy techniques have been

bes voltage angle separati6nbetween Bug3;, and the swing

veloped P, 7]. In this approach, a load-increase continuatiopus. It is expected that the lodg}, will increase withd, until
parameter) is introduced as an additional variable. As a

S. Ghiocel and J. Chow are with the Department of ElectriCalmputer,
and Systems Engineering, Rensselaer Polytechnic Irstifuby, NY 12180,
USA. (e-mail: ghiocel@alum.rpi.edu, chowj@rpi.edu)

1A recent paper g lists 16 bus types, of which thel@ or #Q bus is
one of them. The paper addresses only the solvability issutheo Bus-
type Extended Load Flow (BELF), without addressing spedlifiche voltage
stability margin calculation using thdQ-bus formulation.



the critical voltage point, then further increase® jiwill result
in a decrease of;,. For each value of,, the amount ofP,,

reduced matrix/r is simply the (2,2) entry off (2). Here the
load is of constant power factor, i.€)y, = Pr, tan ¢, allowing

is not known until the power flow is solved. This eliminateshe reactive power equation to be rewritten as

the active power balance equation at the load Bys The

. 2 o
reactive power balance equation/at is still maintained. For Qr = ViBeosb, Vi _ _ViEsinb, tang  (4)
load increases involving constant-power-factor loads and _ X X
multiple buses, additional expressions are needed to aevethat is,
the r.e.duced J_acoblgn ma.tmb@. The cpmputaﬂon of voltgge ViEcosf, V2 ViEsino,
stability margins using this method is no more complicated -~ X Ttangb (5)

than a conventional load flow solution and the step size in

increasingd to reach the critical voltage point is not limited.The reduced Jacobian is the partial derivative 8f ith

In addition, computation-speed enhancement techniquers s{ESPect toV,

as decoupled power flow can still be usdd][

This paper is organized as follows. In Section I, we use
a single-load stiff-bus model to motivate the new problem
formulation. Sections Ill provides the general framewofk o
the approach. Section IV uses two example test systems tf
. o
illustrate the method.

which is singular when/p = 0.
For the 2-bus system in Fid, we explore the singularities
She Jacobian®j and @). Using £ = 1 pu andX = 0.1 pu,

1
Jr = 5 (Ecosf; = 2VL + Esin 6, tan ) (6)

we plot the variation of)s, Py, V1, and the determinants of

II. MOTIVATION

J andJg, for 0.9 lagging, unity, and 0.9 leading power factor

loads. Fig.2 shows the familiar®V" curve. The singularity of

Consider the two-bus power system shown in Fig.in
which the load bus is connected via a reactaficto the stiff
voltage source withZ = 1 pu and its angle set to zero. The

J occurs when the slope of theV curve becomes infinite.

load is denoted by a voltage of magnitudg and phase-6;, 12
and a power consumptioR;, + jQ 1. The angle, is positive
so that power is transferred from the stiff source to the loa 1
Following [4], we will consider the power flow solutions of =
the system for constant power load whéde = Py, tan(¢), % 0.8 .
wherecos(¢) is the power factord is positive for laggingand 2 .
negative for leading). g 0.6l :
2 1
Jo . ~ _ 8,4l ¥
FEe jX I VLe ]95 S 04 R
— ‘
0.21 unity p.f.
: - = =0.9 lagging
F constant PL + ]QL 0 ‘ ‘ ~ -~»0.9 {eading
0 1 2 3 4 5 6 7 8

stiff source (strong system)

Figure 1. A two-bus power system

Load bus power (pu)

PV curves

Figure 2.

There are two relevant power flow equations for this system,,:igs_ 3 and 4 show the variation ofi; and P, versus
both for the load bus: 0,. The slopes of these curves are finite within the complete
po_ _ VLEsinb, QL - Vi operational range of the angle separation. The peak of each
L= X ’ L= X X Py, curve in Fig.4 corresponds to the value of the separation
Treating the load bus as BQ bus, the Jacobian matrix ob-angled. at the critical voltage point. Note that the power factor

tained by taking the partial derivatives of these two equmti Of the load determines the maximuty that is feasible.
with respect tod, and V7, is The values of the determinants of and Jr are shown
in Fig. 5. It is obvious thatdet(J) = 0 at 6., the value

ViEcoss V7

J= L “;Lgcf)sgs 2VESi£ 0 p (2) of the angle separation at the critical voltage point. On the
X [Vpksmbs L — Lcosts other hand,Jr remains nonzero at., such that the Newton-
The Jacobiany is singular when Raphson iteration scheme will readily converge. In additio
det J = (2V}, cosfs — E)/X =0 3) Jr = 0 only when the load bus voltage;, is zero.

Figs. 4 and5 show that the separation andlg is a useful
which occurs at the critical voltage point. variable to provide additional insights into the voltagehsiity

If the load bus is taken as af@ bus, then the separationproblem. Most voltage stability analysis investigatiores/én
angled, can be specified without specifyirig;, and the active focused directly on//;, and largely ignored following up on
power equation is no longer neededdf, is fixed, then the 6,.
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IIl. THEORETICAL FRAMEWORK AND COMPUTATION
ALGORITHMS

In this section, we consider the general framework of a
power flow formulation including amA@ bus, and extend
the method for steady-state voltage stability analysmaafig
for load and generation increases on multiple buses and for
constant power factor loads.

Consider a power system withV, generator buses and
Ny, load buses, such that the total number of buse¥ is-

N¢g + Nyp. Let Bus 1 be the swing bus, Buses 2/X@; be the
generatorPV buses, and BuseSs + 1 to N be the loadPQ
buses.

The power flow problem consists of solving the active and
reactive power injection balance equations

APi:Pi—fpi(@,V):O, i=2,..,N (7)
AQi=Qi—fqi(0,V) =0, i=Ng+1.,N (8

where P; and Q; are the scheduled active and reactive power
injections at Busi. VectorsV and @ contain the bus voltage
magnitudes and angles, arf@;(0,V) and fo;(6, V) are the
computed active and reactive power injections, respdgtive
AP is the vector of active power mismatches at Buses 2 to
N, and AQ is the vector of reactive power mismatches at
BusesNg + 1 to N.

The power flow problem is commonly solved by the
Newton-Raphson method, using the iteration

J Ab o J11 J12 AG o AP (9)
AV] 7 [Jar Jeo| [AV] T [AQ
where the Jacobian matrix is a square matrix of dimension
(2N — N — 1) containing the partial derivatives of the active

and reactive power flow equations with respect to the bus
anglesf and the voltage magnitudés, where

0 0 0 0
J11:%, J12:a'—7;f, J21:%, J22:a'—f‘f (10)
6=1[0 - On] (11)
V= [VNgr1 -+ Va]© (12)

A6 and AV are the corrections ot and V, respectively.

A. Power flow formulation including arl@ bus

Suppose BusV is an AQ bus with 0y = 63, and Qn
specified, then the Newton-Raphson iteration reduces to

J AOr| _ |Jrnn Jriz2| |[AOr| |APgr (13)
BIAV | 7 |Jrat Jra2| |[AV ]~ [ AQ

where
Jrin=Ju(l...N=21...N=2)[p g (14)

JR12 == Jlg(l ... N — 2; 1...N— NG)|9N:9?V (15)
JR21 == ng(l N—Ng; 1... N_2)|9N:9?\; (16)
JRr22 = J22|9N:9}:V (17)

The number of bus angle variables is reduced by one, such
that o
Abp=[Af - Afn_1] (18)



The AQ bus active power flow equation is eliminated, sucBacobian/z, such that
that A Pg is the vector of active power mismatches at Buses -

2to (N —1). The loadPy on BusN is no longer specified, Jri = Jri = By, i=L..g—-1 k=2 35

but it can be computed usinfp;(6,V). _ . (25)
This reduced power flow formulation would not yield i = Jri —acJn, i=Np—1,...N-2

directly a specificPy on Bus N. However, this is not a {=Np,..,N -1 (26)

hindrance in voltage stability analysis. Instead of inste@  j.. = Ju — a,Jytang,, i= Ny, —N
Py on Bus N and not knowing whether the non-convergent (=N N_1 27)
result is actually the maximum loadability point, a user can preo
keep increasing the angular separation betweenBasd the whereN;, = 2N — N —2 is the dimension of/z. The other
swing bus until the maximum power transfer point is reachethws of Jr remain unchanged.
The reduced Jacobiafz would not be singular at that point In this more general formulation of th&Q-bus power flow,
and the maximum loadability point can be readily computethe Newton-Raphson iteration becomes
= |Abgr APgr
on [ a7] - [36] &

where the power mismatc21)-(23) is based on the previous

In voltage stability analysis, it is common to specifyiteration. In voltage stability margin calculations, tgeiction
constant-power-factor loads. In this section, we will exte solution at a lower angle separation condition can be used to
the iteration {3) to a more general case by consideringitiate the solution process.
constant-power-factor load increases at multiple loacgbus
be supplied by generators at multiple locations. C. Algorithms for computing voltage stability margins

Let BusesV,, to N be load buses with constant power factor
cos ¢y, that is,Q, = Pytan ¢, for £ = N,,, ..., N. The active
power load increases at these load buses are scaled wittte
to Bus NV, that is,

B. Voltage stability analysis for constant-power-factoads

BecauseJr in (28) would not be singular at the max-
imum loadability point, fast and well-conditioned voltage
S&ability margin calculation methods can be formulatedreHe
we present two algorithms for steady-state voltage stgbili

P —P=ay(Py—PY), (=N, ..N—1 (19) analysis as basic applications of tH&)-bus method.

Algorithm 1: using AQ-bus power flow with Jr to compute
The load increase is balanced by increases in outputs valtage stability margins

generators on Buses 1 tp with the active power at these 1) From the current operating point (base case) with a

generators scaled according to the swing bus power transfer ofP,, specify the load and generation
0 0 increment schedule, and the load composition (such as
Py—P) =0 (PL—=P), k=24 (20) constant power factors).

) ) o 2) Use a conventional power flow program with increasing

In a solved power flow solution, the active power injections  |pads until the Newton-Raphson algorithm no longer
at Buses 1 andV are computed as the power flow leaving converges.

the buses on the lines interconnecting them to the otheisbuse 3) starting from the last converged solution in Step 2, apply

Thus in anAQ-bus formulation, we account for the groups of the AQ-bus power flow methodl)-(28) to continue the
increasing load and generation by modifying the power flow  power flow solution by increasing the angle separation

injection equations such that (0, — Ox) between theAQ bus and the swing bus
until the maximum power transfeP; .« IS reached.
fee(V,0) = Bifpi(V,0), k=2,...q (21) Typically, the bus with the largest load increase will
fpe(V,0) = asfpn(V,0), £=N,, ...N—1 (22) be selected to be thd@ bus. The base-case voltage
ng(V, 9) = Ozgpr(V, 9) tan gf)g, ! = Np, ceny N -1 (23) Stability margin iSPOm - POmax - PO-
4) Specify a set ofV,. contingencies to be analyzed.
The other injection equations remain unchanged. 5) For contingencyi, repeat Steps 2 and 3 for the post-

In obtaining a new reduced Jacobian matrix to solve this ~ contingency system to compute the maximum power
new power flow problem, we need two row vectors of partial ~ transferr; ..., and the voltage stability margif¥;,, =

derivatives offp; and fpy Pjnax — Po.
6) Repeat Step 5 for all contingencies-1,2,..., N..
J; = {% %} , i=1,N (24) 7) The contingency-based voltage stability margin, mea-
" sured as additional power delivered to the load until the
where J; is theith row of the Jacobian. Note thaty is row maximum loadability point, is given by
N — 1 of J without the entry_ due t(AQN, and J; is not Pn= min {P i} (29)
contained inJ because Bus 1 is the swing bus. i=0,...,N¢

Thus the reduced Jacobidi in (13) for the fixed reactive  Note that for any of the contingencies in Step 5, if the-
power injection problem is modified to form a new reducebus algorithm forP, fails to converge, that ispP, is not a



feasible solution, then thd@-bus algorithm can be used to Area 1 Area 2
reducel, until a converged power flow solution is obtained. L1020 o g0 g 12011000
The new power flow solution would then be a voltage secureen 1 @—H— —’—‘—@ Gen 11
operating condition.

Also note in Steps 3 and 5 of Algorithm 1, all the capability ., , @_’_ _’_@ Gen 19
of the conventional power flow can be used. For example, taps ) { , 14% 1

can be adjusted to maintain voltages, and generators ergeed
their reactive power capability can be changed?@ buses
from PV buses. Both capabilities are important for findingigure 6. Two-area, four-machine power system
the proper voltage stability limé.

The advantage of using a conventional power flow algorithm
in Step 2 of Algorithm 1 is that it will allow a user to seleceth ) Increase the angular separation between Busnd the
AQ bus for Step 3. There are several ways to select4tie swing bus and repeat Steps 3 and 4 until the load power
bus: (1) use the bus with the largest load increase (as stated at Bus N reaches the maximum value.
Step 3 of Algorithm 1), (2) use the bus with the largest rate 6) ApPly Steps 4 to 7 of Algorithm 1 using Steps 2 to 5
of decrease of the bus voltage magnitude, or (3) use the bus Of this algorithm to find the contingency-based voltage
angle with the largest component in the singular vector ef th ~ stability margin.
smallest singular value of J from the last converged saiutio It is expected that Algorithm 2 would be slower than
Frequently all three will yield the same bus. Algorithm 1. However, in Algorithm 2, minimal additional

It is also possible to solve for voltage stability margingode for the Jacobian is needed.
without updating.Jr (13). This method can be useful when
one wants to avoid changing or reprogramming the Jacobian IV. ILLUSTRATIVE EXAMPLES
matrix entries, but it has slower convergence. The loackise  In this section thedQ-bus power flow approach is applied
condition (19), the generator increase conditid20), and the to solve for the voltage stability margin of a 2-area, 4-niaeh
load power factor conditio), = P, tan ¢, are now enforced system, and a 48-machine system.
as fixed values after each power flow iteration has converged.

To be more specific, start from the nominal power flovh. Two-area system
solution with the load on Bus/ at /%. The angular separation \we first use the Klein-Rogers-Kundur 2-area, 4-machine
of Bus NV and the swing bus is increased without changing arystem [.1] shown in Fig.6 to illustrate the method. In this
injections. The power flow is solved, and the resulting load gystem, Load 14 will be increased at a constant power factor
Bus N and the generation at the swing bus are computed. Tiaig0.9 lagging whereas Load 4 is kept constart.@6+;1 p.u.
new valuePy is used to compute the load increase on the othghe |oad increase is supplied by Generator 1. It is assumed
load buses9), to be balanced by the generations according {Rat all the generators have unlimited reactive power suppl
(20). These new load and generation values are used to solveJsing Algorithm 1, the conventional power flow solution
for anotherAQ-bus power flow. The process is repeated untig shown as the black dashed line of thé curve in Fig.
the load and generation proportions are within toleran®és T 7. |t fails to converge when the active power of Load 14 is

Load 4 Load 14

procedure is summarized is the following algorithm. P4 = 19.15 pu which occurs when the angle separation is
Algorithm 2: using unmodified Jz to compute voltage 1 — 614 = 91.1°. After this point, theAQ-bus approach is
stability margins used to continue the power flow solution by further incregsin

the angle separation between Buses 1 and 14. The solution of
the AQ-bus approach is shown as the solid line of A&

increment schedule, and the load composition (such §4ve in Fig.7. From the PV curve, the critical voltage is
constant power factor). 0.8144 p.u. and the maximum active load power is 19.2 p.u.,

2) Use a conventional power flow program with increasin§fith @ power factor of 0.9 lagging.
loads until the Newton-Raphson algorithm no longer We also plot the load active power at Bus 14 versus the
converges. angle separatiord; — 614 with the black curves in Fig8.

3) Starting from the last converged solution in Step 2, app‘\)l/Ote that at maximum power transfe, — 614 = 99.5° o
the AQ-bus power flow algorithmi() by increasing the .1) Singular value. analysisAt the maximum loadability
angle separation between tH€) bus and the swing bus point, the largest singular value of is 423 and the two
to obtain a converged value of load at BNsas Py "smallest singular values are 3.59 and 0.02. At the same

4) Update the loads and generations at the other bu%});}atmg {met’ th4ez:lgargedst23rngd smalle?t SI'”QFU"?“ \(/jallfes 0
according to {9) and @O0), respectively, and repeat the €Jr Matrix are and .49, respectively. hils does
power flow solution, until 19) and Q0) are satisfied. not exhibit any singularity or convergence problems. _
At the point where the conventional power flow fails to
2Chapter 3 of 7] contains a more detailed discussion of voltage stabiligonverge, the smallest singular value of the Jacobian is 0.0
margin calculation for equipment reaching their reactiesver output limits.  gnd its singular vector is given in Table. Note that the
At the breaking point, the smallest singular value of theveational Jacobian | f th . | ith the | itud
matrix may not be exactly zero. Thé@-bus method can still be useful if element of the singular vector with the largest magnitude

the regular power flow cannot converge at the breaking point. corresponds t@,4, the bus angle of the choset) bus.

1) From the current operating point (base case) with
power transfer ofy, determine the load and generatio



Table Il
SINGULAR VECTOR CORRESPONDING TO THE SMALLEST SINGULAR
= = = Conventional power flow VALUE OF THE CONVENTIONAL POWER FLOWJACOBIAN
O  Switch to AQ-bus approach
AQ-bus approach
= = = Conventional power flow (var-limited)| . ,
O Switch to AQ-bus approach Singular vector| Corresponding
AQ-bus approach (var-limited) component variable
095k = oo 0.025 02
"“~~o~.\_ s 0.064 03
o 0.075 04
0.9 L]
0.005 010
? 0.329 011
S oss 0.358 012
3 0.416 015
g oo 0.450 014
£ 0.031 020
g
g 0.228 0101
2 075 0.332 0110
g 0.366 0120
o 0.085 Vs
0.086 Va
0.021 Vio
0.65 0.117 Vi
18.2 18.4 18.6 18.8 19 19.2 19.4 O 125 V14
Load active power (pu) 0.048 V20
0.172 Viol
, _ 0.024 Vito
Figure 7. Power-voltage{V') curves of two-area system, computed using 0.062 Vi
. . 120
Algorithm 1
= = = Conventional power flow
O  Switch to AQ-bus approach 6r
= AQ-bus approach = = =Genl
= = = Conventional power flow (var-limited) - = =Gen2
O  Switch to AQ-bus approach 55+
AQ-bus approach (var-limited) = = =Gen3
194 = = =Gen4
5 O Switch to AQ-bus method
X: 99.49
Y:19.2 a5t
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Figure 8. Power-angleH0) curves of two-area system, computed using
Algorithm 1 Generator 1, and the reactive power losses continue todisere
after the point of maximum power transfer point, even though
the active power consumed by the load decreases.
2) Including var limits on a generatorBecause thed@-  3) Solution using Algorithm 2We applied Algorithm 2 to
bus power flow incorporates all the functionalities of a conhe two-area system and obtained the same results as with
ventional power flow, we can readily demonstrate the effeigorithm 1. Note that with Algorithm 2,/ is not modified
of a var limit on a generator. Suppose we impose a maximu include the load and generator increase schedules. Thus
reactive power generation of 3 pu for Generator 2, that is, Aigorithm 2 is similar to a dishonest Newton method and
the reactive power generation of Generator 2 exceeds 3 puadleds more iterations than Algorithm 1.
will be changed into &@Q bus with@ = 3 pu. The resulting
PV and P§ curves for the same load increase conditions are ]
shown as the red curves in Figgand8. B. NPCC 48-machine system
Also of interest is the amount of reactive power provided In this section we extend thel@Q-bus power flow to a
by the four generators. Fi§.shows the reactive power plotted48-machine NPCC (Northeast Power Coordinating Council)
versud; — 614 for the var-limited case. We observe that the vasystem [2] using Algorithm 1. A portion of the system map
limit on Generator 2 increases the reactive power burden sgiven in FigurelQ. For this system, we increase the loads on



\ f The method readily computes ti#&/ curve to the maximum
\ Hydro Quebec g loadability point and beyond. The algorithm fails to corgesr

3 5 when the system voltage is too low, because some load buses
can no longer receive enough reactive power.

Line Trip Contingency Analysis based on PV Curves
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Figure 11. PV-curves for multiple contingencies on the NP&82machine
system

To demonstrate the computation of the voltage stability-mar
gin for contingency analysis, a set of line outage conticgen
(A-E) is selected, as listed in Tab\é. The location of these
lines are labeled in FidlO. In Fig. 11, we plot the computed

Buses 4, 15, and 16 near Boston, with increased supply comiﬁg curves for the five contingencies against the base case
from the generators on Buses 30 and 36 in New England, aﬁ, curve. Note th_at e_ach power flow §olut|on is designated

the generator on Bus 50 in New York, as indicated in Fig/ith @ plot marker in Fig11, demonstrating that thdQ-bus

10. We choose Bus 50 as the swing bus and Bus 16 as fRethod does not require a small step size near the maximum
AQ bus. Generators on Buses 30 and 36 supply additiofQWer transfer point. In this example we used a step size of
power as linear functions of the swing bus power output, s Put larger angle steps can be used. _

shown in Tablelll. Similarly, the loads on Buses 4 and 15 NOte that Line 73-74 is in New York. Hence its outage

are scaled with respect to th&) bus, as shown in Tabky/ 3 results in aPV curve not much different from the basg case
The loads at Buses 4, 15, and 16 all have a constant poef CUrve. Lines 3-2 and 3-18 are near the buses with load
factor of 0.95 lagging. All the other loads remain constant 'creases, and thus tiel” curves resulting from their outage

their base values, and the active power generation for ther otSNOW €SS stability margins. Lines 8-73 and 2-37 are interfa
generators also remain constant. lines between New York and New England. Their outages have

significant impact on the voltage stability margin because p

Figure 10. Map of the NPCC 48-machine system

Table Il of the load increase in New England is supplied by a New
GENERATOR SCHEDULE FORI8-MACHINE SYSTEM York generator. From Tabl¥, the contingency-based voltage
Generator Bus # | Bus Type B stability margin is 944 MW for the load on Bus 16.
50 AV (swing) | -
30 PV 0.10 Table V
36 PV 0.80 CONTINGENCY LIST FOR48-MACHINE SYSTEM
Contingency| Line Outage| Pre-contingency | Voltage Stability
Power Flow Margin
Table IV A 7374 72 MW 1,346 MW
L OAD SCHEDULE FOR48-MACHINE SYSTEM B 8-73 97 MW 944 MW
c 2-37 53 MW 1,221 MW
Load Bus # Bus Type ayp D 3-2 205 MW 1,005 MW
16 AQ - E 3-18 50 MW 1,231 MW
4 PQ 0.50
15 PQ 0.25
We use theAQ-bus method to compute thBV curve for V. CONCLUSIONS

the base case, which is shown in Fitl as the base case. | paper, we have developed a general-purpose power

3Any of the buses in the load increase group (Buses 4, 15, apdt® flow method .tha.t directly eliminatgs the .matrix §ingularity
chosen as thelQ bus for our method to work. issues that arise iRV curve calculations by introducing a new



AQ-bus type. The elimination of the singularity using th@-  [9] Y. Guo, B. Zhang, W. Wu, Q. Guo, and H. Sun, “Solv-
bus method was motivated using a classical two-bus system, ability and Solutions for Bus-Type Extended Load Flow,”
and a framework was developed to include multiple load buses Electrical Power and Energy Systemsl. 51, pp. 89-97,
and multiple generators in the computation/o¥” curves. We 2013.

presented two algorithms for practical implementationhad t [10] B. Stott, “Review of load-flow calculation methods,”
method and demonstrated both algorithms on a small two- Proceedings of the IEEEvol. 62, no. 7, pp. 916-929,
area system. Finally, we extended the method to a 48-machine 1974.

system to show its scalability and applicability to steatigte [11] M. Klein, G.J. Rogers, and P. Kundur, “A fundamental

voltage stability margin calculation and contingency ssisl. study of inter-area oscillations in power systemgEE
This new method provides many advantages in the com- Transactions on Power Systemsl. 6, pp. 914-921,

putation of steady-state voltage stability margins beeaitis Aug. 1991.

does not have numerical issues at the maximum power trangfig?] J. H. Chow, R. Galarza, P. Accari, and W. Price, “Indrtia

point. Thus, power system operators can calculate thelisgabi and slow coherency aggregation algorithms for power

margins using this method far more reliably and quickly than  system dynamic model reductiodZEE Trans. on Power

a conventional power flow method. Systemsvol. 10, no. 2, pp. 680-685, 1995.
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